# [(NHC)<sub>2</sub>Cu]X Complexes as Efficient Catalysts for Azide-Alkyne Click Chemistry at Low Catalyst Loadings

Silvia Diez-Gonzalez\* and Steven P. Nolan\*

Angewandte Chemie Int. Ed. 2008, Early Veiw

$$R^{1}-N_{3}$$
 + =  $-R^{2}$  
$$\frac{[(ICy)_{2}Cu]PF_{6} (0.5 \text{ mol }\%)}{\text{neat, rt}}$$
  $R^{1}-N_{N}$ 

Nolan Griggs Current Literature Report - 10-18-2008

## Click Chemistry - Overview

Overall Goal: "... to develop an expanding set of powerful, selective, and modular "blocks" that work reliably in both small- and large scale applications."

The criteria for an effective "click" reaction:

- Modular
- Wide in scope
- Very high yielding
- Generates easily removed, inoffensive byproducts
- Stereospecific (but not necessarily enantioselective)
- Simple reaction conditions (not sensitive to O<sub>2</sub> or H<sub>2</sub>O)
- Uses readily available starting materials
- Run neat (or in a benign solvent such as H<sub>2</sub>O)
- Simple product purification no chromatography (i.e. crystallization, distillation, etc.)

To achieve these required characteristics, there must be a high thermodynamic driving force (usually > 20 kcal/mol).

Reveiw: Sharpless, K.B.; Finn. M.G.; Kolb, H.C. *Angew Chem. Int. Ed.* 2001, 40, 2004-2021.

#### Click Chemistry - Common Examples

• Cycloadditions of unsaturated species - 1,3-dipolar cycloadditions, Diels - Alder

$$N_3$$
  $N_3$   $N_4$   $N_4$   $N_4$   $N_5$   $N_5$   $N_5$   $N_5$   $N_6$   $N_6$ 

Nucleophilic substitution chemistry - particularly ring-opening of strained heterocyclic electrophiles

• "Non-aldol" carbonyl chemistry - formation of ureas, aromatic heterocycles, oxime ethers, hydrazones

• Additions to C-C multiple bonds - epoxidation, aziridination, dihydroxylation, Michael additions of Nu-H reagents

Sharpless et al. J. Org. Chem. 2001, 66, 4386-4392

### 1,3-dipolar Huisgen Cycloaddition

• Most widely used "click" reaction. Found applications in drug discovery, materials science,

biotechnology, and many other broad areas.

• In 2002, it was found that regioselectivity could be controlled through the use of Cu(I) salts. In 2004, DFT studies gave further insight into the mechanism. <sup>2</sup>



Sharpless, K.B. et al. Angew. Chem. Int. Ed. 2002, 41(14), 2596.
 Sharpless, K.B. et al. J. Am. Chem. Soc. 2004, 127, 210.

## Cu(I)-ligand Studies on the Huisgen Cycloaddition

- The main benefit of having a ligand on copper would be stabilizing the oxidation state of copper throughout the reaction, thus allowing for lower catalyst loadings and cleaner reactions.
- Several well-defined catalyst systems have been developed with some interest in lower catalyst loadings:

Sharpless K.B. et al. Org. Lett. 2004. 6(17), 2853.

Finn, M.G. et al. *J. Am. Chem. Soc* **2007**, 129. 12696.

Santoyo-Gonzalez et al. *Org. Lett.* **2003**, 5(11), 1951.

### Use of (NHC)CuX Catalysts





Nolan, S.P. et al. Chem Eur. J. 2006, 12, 7558-7564.

## New Cationic Copper (I) Complexes: [(NHC)<sub>2</sub>Cu]X

$$[Cu(CH_{3}CN)_{4}]X + IPr \cdot HCI \xrightarrow{NaO^{t}Bu} [(IPr)_{2}Cu]X$$
 
$$X = PF_{6} 96\%$$
 1 
$$X = BF_{4} 92\%$$
 2



[(IPr)<sub>2</sub>Cu]PF<sub>6</sub>, 1

OSiEt<sub>3</sub>

$$\frac{3 \text{ mol } \% [(IPr)_2Cu]X, 12 \text{ mol } \% \text{ NaO}^t\text{Bu}}{3 \text{ equiv Et}_3\text{SiH, THF, rt}}$$

$$R = H \qquad R = \text{Me}$$

[(IPr)<sub>2</sub>Cu] PF<sub>6</sub> **1** 2 h, 97% 6 h, 92% (trans:cis = 90:10) [(IPr)<sub>2</sub>Cu] BF<sub>4</sub> **2** 0.5 h, 98% 3 h, 90% (trans:cis = 85:15)

• Showed increased activity for the hydrosilation of carbonyl compounds to previous catalysts of type (NHC)CuX.

Nolan S.P. et al Organometallics 2006, 25, 2355.

### Title Paper: Inception and Catalyst Screen

ketone hydrosilylation 
$$\Rightarrow$$
 Y = CI Ref. 14 improved Performance Ref. 13 performance Ref. 13 performance Ref. 13 ref. 9 Re

Ph N<sub>3</sub> + = Ph 
$$\frac{[(NHC)_2Cu]X \ 1 - 7}{(2 \ mol \ \%)}$$
 Ph N N Water, RT 8a Ph

| [(NHC) <sub>2</sub> Cu]PF <sub>6</sub>   |     | t [h] | Conv. [%] <sup>[a]</sup> | [(NHC)₂Cu]BF                            | 4   | t [h] | Conv. [%] <sup>[a]</sup> |
|------------------------------------------|-----|-------|--------------------------|-----------------------------------------|-----|-------|--------------------------|
| [(IPr) <sub>2</sub> Cu]PF <sub>6</sub>   | 1a  | 18    | 71                       | [(IPr)₂Cu]BF₄                           | 16  | 8     | 100                      |
| [(SIPr) <sub>2</sub> Cu]PF <sub>6</sub>  | 2a  | 5     | 100                      | $[(SIPr)_2Cu]BF_4$                      | 2b  | 5     | 100                      |
| [(IMes) <sub>2</sub> Cu]PF <sub>6</sub>  | 3 a | 6     | 100                      | [(IMes) <sub>2</sub> Cu]BF <sub>4</sub> | 3 b | 6     | 100                      |
| [(SIMes) <sub>2</sub> Cu]PF <sub>6</sub> | 4a  | 18    | 5                        | [(SIMes)2Cu]BF4                         | 4b  | 18    | 13                       |
| $[(ICy)_2Cu]PF_6$                        | 5 a | 1.5   | 99                       | $[(ICy)_2Cu]BF_4$                       | 5 b | 5     | 95                       |
| $[(IAd)_2Cu]PF_6$                        | 6a  | 5     | 100                      | [(IAd) <sub>2</sub> Cu]BF <sub>4</sub>  | 6b  | 3     | 100                      |
| $[(ItBu)_2Cu]PF_6$                       | 7 a | 18    | 76                       | $[(ItBu)_2Cu]BF_4$                      | 7 b | 18    | 35                       |

## **Reaction Scope**

## Examining the Catalyst Loading

#### **Mechanistic Considerations**



- Both A and B were isolated and unambiguously assigned. For comparison, the analogous structures for the IPr-series were also made in a similar fashion and compared with the known data.
- Therefore, it appears one of the ligands is serving as a base in the reaction to form the requisite copper acetylide!
- When pure A and pure B were treated with one another, pure triazole product was obtained, along with the regeneration of the precatalyst.



#### **Conclusions**

- [(NHC)<sub>2</sub>Cu]X Complexes serve as efficient catalysts for azide-alkyne "Click" chemistry.
- Along with high yields, the reaction can be performed in the absence of solvent with a large reaction scope.
- In one case, catalyst loading was dropped to 40 ppm to give the product with a TON above 20,000 and a turnover frequency of 5000/h.
- Preliminary mechanistic studies indicate the role of one ligand to serve as the base for acetylenic deprotonation in the catalytic cycle.